Inequalities for some classical spin vector models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1976 J. Phys. A: Math. Gen. 91673
(http://iopscience.iop.org/0305-4470/9/10/019)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.88
The article was downloaded on 02/06/2010 at 05:12

Please note that terms and conditions apply.

# Inequalities for some classical spin vector models 

H Kunz $\dagger \|$, C E Pfister $\ddagger$ and P A Vuillermot§ף<br>$\dagger$ Laboratoire de Physique Théorique, EPF-L, Lausanne, Switzerland<br>$\ddagger$ ZiF, Universität Bielefeld, Bielefeld, West Germany<br>§ Department of Physics, Princeton University, Princeton, NJ 08540 USA

Received 1 April 1976, in final form 21 May 1976


#### Abstract

Inequalities are derived for a class of lattice systems including classical anisotropic $X-Y$ and Heisenberg ferromagnets. Inequalities relating different models are also established and we point out their connections with the existence problem of phase transitions.


## 1. Introduction

In the last few years correlation inequalities have been studied in several interesting directions in statistical mechanics and in constructive quantum field theory. We shall show in this paper how it is possible to combine the inequalities of Ginibre (1970) with those of Fortuin et al (1971) (see also Holley 1974, Preston 1974) in order to obtain new inequalities. We shall consider explicit models of ferromagnetism. An abstract version of our results appeared in Kunz et al (1975).

The models which we shall consider belong to the class of the classical spin vector models. They are defined on the lattice $\mathbb{Z}^{d}, d=1,2, \ldots$ as follows: to each $r \in \mathbb{Z}^{d}$ we associate a vector $S_{r}=\left(S_{r}^{1}, \ldots, S_{r}^{D}\right)$ of $\mathbb{R}^{D}$ with unit length. We call it a $D$-dimensional (classical) spin; it is parametrized by the points of the unit sphere in $\mathbb{R}^{D}$ and we choose for its distribution the normalized uniform measure on this sphere, written $\mathrm{d} s$. The spins have ferromagnetic interactions. A typical Hamiltonian for the system defined on a finite subset $\Lambda$ of $\mathbb{Z}^{d}$ is

$$
-H=\sum_{\substack{i \neq j \\ \imath j \in \Lambda}} J_{i j}^{1}\left(S_{i}^{1} S_{j}^{1}+\gamma \sum_{\alpha=2}^{D} S_{\imath}^{\alpha} S_{j}^{\alpha}\right)+\sum_{i \in \Lambda} h_{t} S_{i}^{1}
$$

with

$$
J_{i j}^{1}=J^{1}(|i-j|) \geqslant 0, \quad|\gamma| \leqslant 1
$$

Here $|i-j|$ is the Euclidean distance between $i$ and $j$. The constant $\gamma$ describes some anisotropy in the interaction between two spins and $h_{i}$ is an external inhomogeneous magnetic field. For $D=1,2$ or 3 we have respectively the Ising models, $X-Y$ models or Heisenberg models. We can apply our inequalities to obtain simply a number of rigorous results about phase transitions.

[^0](i) A simple proof of the absence of spontaneous magnetization for $D>2$ whenever this is true for $D=2$ (see Mermin 1967, Vuillermot and Romerio 1975).
(ii) A proof of the existence of a spontaneous magnetization for the model with $D=2$ and $d \geqslant 2$ if $|\gamma|<1$ at low enough temperatures (Kunz 1974, Malishev 1975).
(iii) A monotonicity property of the critical temperatures as a function of $D$
$$
T_{\mathrm{c}}(1) \geqslant T_{\mathrm{c}}(2) \geqslant T_{\mathrm{c}}(D), \quad D \geqslant 3
$$

Here $T_{\mathrm{c}}$ is the temperature below which the spontaneous magnetization is non-zero. These inequalities were already empirically obtained from an analysis of series expansion (Stanley 1974).

## 2. General results

In this section we reveal our method from a general point of view and we shall consider particular examples in the subsequent sections. We begin with a short review of the known results about inequalities to be used extensively later. Our main result is formulated in proposition 4.

All models which we consider are defined on a finite subset $\Lambda$ with $N$ elements (see § 1). We do not write this explicitly. The Hamiltonian of a model for $D$-dimensional spins is

$$
\begin{equation*}
-H_{D}(J, h)=\sum_{i \neq j} \sum_{\alpha=1}^{D} J_{i j}^{\alpha} S_{i}^{\alpha} S_{j}^{\alpha}+\sum_{i} \sum_{\alpha=1}^{D} h_{i}^{\alpha} S_{\imath}^{\alpha} \tag{2.1}
\end{equation*}
$$

The interpretation of the parameters $J_{i j}^{\alpha}$ and $h_{i}^{\alpha}$ is as in § 1 . We write $J$ for $\left\{J^{\alpha}\right\}, J^{\alpha}$ for $\left\{J_{i j}^{\alpha}\right\}, J^{\alpha} \geqslant 0$ for $J_{i j}^{\alpha} \geqslant 0$ for all $i, j$ and so on. Expectation values are computed with the usual Gibbs distribution defined from (2.1) and written $\langle\cdots\rangle_{D}(\boldsymbol{J}, \boldsymbol{h})$ or $\langle\cdots\rangle_{D}$. Later we shall need the following results for $D=1$ and $D=2$ (Ginibre 1970).
(i) $D=1$. The spin $S$ takes only two values $\pm 1$ and its distribution is $\mathrm{d} s=$ $\frac{1}{2}(\delta(S+1)+\delta(S-1))$. Let $F_{1}$ be the set of functions which can be expanded in powers of the functions $S_{A}=\Pi_{i \in A} S_{i}, A \subset \Lambda$, with positive coefficients only. For example if $J \geqslant 0$ and $h \geqslant 0, \exp \left(-H_{1}(J, h)\right) \in F_{1}$.

Proposition 1. If $-H_{1}(J, h) \in F_{1}$ and $f, g \in F_{1}$, then

$$
\begin{aligned}
& \langle f\rangle_{1}(J, h) \geqslant 0 \\
& \langle f g\rangle_{1}(J, h) \geqslant\langle f\rangle_{1}(J, h)\langle g\rangle_{1}(J, h) .
\end{aligned}
$$

Remarks. These inequalities were first proved by Griffiths (1967). The first inequality says, for example, that the magnetization is positive in a ferromagnetic Ising model defined by (2.1) with $J \geqslant 0$ and $h \geqslant 0$. The second inequality says that this magnetization increases, if we increase the ferromagnetic couplings $J \geqslant 0$ or the magnetic field $h$.
(ii) $D=2$. The spin $S$ is described by $S=(\cos \theta, \sin \theta), 0 \leqslant \theta \leqslant 2 \pi$, and $\mathrm{d} s=$ $(1 / 2 \pi) \mathrm{d} \theta$. Let $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{N}\right), \theta_{i} \in[0,2 \pi], \boldsymbol{m}=\left(m_{1}, \ldots, m_{N}\right), m_{i} \in \mathbb{Z}$ and $\boldsymbol{m} \cdot \boldsymbol{\theta}=$ $\Sigma_{i=1}^{N} m_{i} \theta_{i}$. Let $F_{2}$ be the set of the functions which can be expanded in powers of $\cos \boldsymbol{m} \cdot \boldsymbol{\theta}$ with positive coefficients only. Examples of functions of $F_{2}$ are $\cos \left(\theta_{i} \pm \theta_{i}\right)$
( $m_{k}=0, k \neq i, j, m_{i}=1$ and $m_{j}= \pm 1$ ) and $\exp \left(-H_{2}(J, h)\right)$ if $J^{1} \geqslant\left|J^{2}\right|, h^{1} \geqslant 0, h^{2}=0$ ( $H_{2}(J, h)$ has an expansion in terms of $\cos \left(\theta_{l} \pm \theta_{j}\right)$ with positive coefficients).
Proposition 2. If $-H_{2}(\boldsymbol{J}, \boldsymbol{h}) \in F_{2}$ and $f, g \in F_{2}$ then

$$
\begin{aligned}
& \langle f\rangle_{2}(\boldsymbol{J}, \boldsymbol{h}) \geqslant 0 \\
& \langle f g\rangle_{2}(\boldsymbol{J}, \boldsymbol{h}) \geqslant\langle f\rangle_{2}(\boldsymbol{J}, \boldsymbol{h})\langle g\rangle_{2}(\boldsymbol{J}, \boldsymbol{h}) .
\end{aligned}
$$

The physical meaning of these inequalities is the same as for $D=1$.
The starting-point of our method is to express a $D$-dimensional spin $S=$ $\left(S^{1}, \ldots, S^{D}\right)$ by a family of two spins $U$ and $V$ of dimension $D^{\prime}$ and $D^{\prime \prime}$ with $D^{\prime}+D^{\prime \prime}=D$ and to use the results known for $D=1$ and 2. This restricts the application of our method to $D \leqslant 4$, so long as we do not have a proposition like proposition 1 or 2 for $D>2$. For the same reason in the case $D=4$, we have no choice for the decomposition and we must take $D^{\prime}=D^{\prime \prime}=2$. The $D$-dimensional spin $S$ is also expressed as $S=\left(U^{\prime}, V^{\prime}\right)$ with $U^{\prime}$ and $V^{\prime}$ vectors of length $\cos ^{2} \theta$ and $\sin ^{2} \theta$ respectively and in $\mathbb{R}^{D^{\prime}}$ and $\mathbb{R}^{D^{\prime \prime}}$ respectively. We rewrite this as follows

$$
S=(\cos \theta U, \sin \theta V), \quad 0 \leqslant \theta \leqslant \pi / 2
$$

with $U$ and $V$ unit vectors ( $=$ spins) in $\mathbb{R}^{D^{\prime}}$ and $\mathbb{R}^{D^{\prime \prime}}$ respectively. We obtain for the spin distribution $\mathrm{d} s$ of one spin the factorization

$$
\mathrm{d} s=\mathrm{d} u \mathrm{~d} v \mathrm{~d} \mu(\theta)
$$

and for the Hamiltonian

$$
H_{D}(\boldsymbol{J}, \boldsymbol{h})=H_{D^{\prime}}\left(\boldsymbol{J}^{\prime}, \boldsymbol{h}^{\prime}\right)+H_{D^{\prime \prime}}\left(\boldsymbol{J}^{\prime \prime}, \boldsymbol{h}^{\prime \prime}\right)
$$

with

$$
\begin{array}{lll}
J_{i j}^{\prime \alpha}=J_{i j}^{\alpha} \cos \theta_{i} \cos \theta_{j}, & h_{i}^{\prime \alpha}=h_{i}^{\alpha} \cos \theta_{i}, & 1 \leqslant \alpha \leqslant D^{\prime} \\
J_{i j}^{\prime \prime \alpha}=J_{i j}^{\alpha} \sin \theta_{i} \sin \theta_{j}, & h_{i}^{\prime \prime \alpha}=h_{i}^{\alpha} \sin \theta_{i}, & D^{\prime}+1 \leqslant \alpha \leqslant D
\end{array}
$$

Example for $D=2$. Here $D^{\prime}=D^{\prime \prime}=1$ and we get

$$
\begin{aligned}
& S=(\cos \theta U, \sin \theta V) \quad 0 \leqslant \theta \leqslant \pi / 2 \\
& \mathrm{~d} s=\mathrm{d} u \mathrm{~d} v(2 / \pi) \mathrm{d} \theta .
\end{aligned}
$$

The measure $\mathrm{d} u$ (or $\mathrm{d} v$ ) is the distribution of a spin of dimension one and thus $\mathrm{d} u=\frac{1}{2}(\delta(U+1)+\delta(U-1))$.

At this point we note that $\cos \theta$ and $\sin \theta$ are positive monotone functions on [ $0, \pi / 2$ ]. In order to elaborate this fact, we introduce a partial ordering on $I$ which is the product of $N$ copies of $[0, \pi / 2]: \boldsymbol{\psi} \leqslant \Phi$ if and only if $\psi_{i} \leqslant \Phi_{i}, \hat{\imath}=1, \ldots, N$. It is easy to verify that $I$ becomes a distributive lattice. In particular each pair of elements $\boldsymbol{\psi}$ and $\boldsymbol{\Phi}$ has a least upper bound $(\boldsymbol{\psi} \vee \boldsymbol{\Phi})_{i}=\max \left(\psi_{i}, \phi_{i}\right)$ and a greatest lower bound $(\boldsymbol{\psi} \wedge \boldsymbol{\Phi})_{i}=$ $\min \left(\Psi_{i}, \phi_{i}\right)$. We say that a real function $f$ in $I$ is increasing if and only if $\boldsymbol{\psi} \leqslant \boldsymbol{\Phi} \Rightarrow f(\boldsymbol{\psi}) \leqslant$ $f(\phi)$. We shall later have measures $\mathrm{d} \nu(\theta)$ of the following type:

$$
\mathrm{d} \nu(\boldsymbol{\theta})=\boldsymbol{p}(\boldsymbol{\theta}) \prod_{i=1}^{N} \mathrm{~d} \mu\left(\boldsymbol{\theta}_{i}\right)
$$

with $p(\theta) \geqslant 0$ and satisfying

$$
\begin{equation*}
p(\boldsymbol{\psi} \vee \Phi) p(\boldsymbol{\psi} \wedge \Phi) \geqslant p(\boldsymbol{\psi}) p(\Phi), \quad \forall \boldsymbol{\Phi}, \boldsymbol{\psi} \in \dot{I} . \tag{2.2}
\end{equation*}
$$

Such measures create the nice property (Preston 1974).

Proposition 3. Let $\mathrm{d} \nu$ be a normalized measure on $I$ defined as above. Then if $f$ and $g$ are both decreasing (increasing) on $I$

$$
\int \mathrm{d} \nu f g \geqslant \int \mathrm{~d} \nu f \int \mathrm{~d} \nu g .
$$

If $f$ is increasing and $g$ decreasing, then the inequality is reversed.
Remarks. This proposition was first proved by Fortuin et al (1971) in the case of a discrete measure. In the case of an Ising model defined by (2.1) the Gibbs distribution has property (2.2) if $J \geqslant 0$.

We now are in a position to formulate and prove our main result.
Proposition 4. Let $D=2,3$ or 4 . Let us suppose that $H_{D}(J, h)$ can be decomposed as above with $-H_{D^{\prime}}\left(\boldsymbol{J}^{\prime}, \boldsymbol{h}^{\prime}\right) \in F_{D^{\prime}}$ and $-H_{D^{\prime \prime}}\left(\boldsymbol{J}^{\prime \prime}, \boldsymbol{h}^{\prime \prime}\right) \in F_{D^{\prime \prime}}, D^{\prime}, D^{\prime \prime}=1$ or 2 . Let $f_{1} \in F_{D}, i=1$, 2 , and $g \in F_{D^{\prime \prime}}$. Then

$$
\begin{equation*}
\left\langle h f_{1} g\right\rangle_{D}(\boldsymbol{J}, \boldsymbol{h}) \geqslant 0 \tag{2.3}
\end{equation*}
$$

if $h$ is a positive function on $I$,

$$
\begin{equation*}
\left\langle h_{1} f_{1} h_{2} f_{2}\right\rangle_{D}(\boldsymbol{J}, \boldsymbol{h}) \geqslant\left\langle h_{1} f_{1}\right\rangle_{D}(\boldsymbol{J}, \boldsymbol{h})\left(h_{2} f_{2}\right\rangle_{D}(\boldsymbol{J}, \boldsymbol{h}) \tag{2.4}
\end{equation*}
$$

if $h_{i}$ is positive monotone decreasing on $I, i=1,2$.

$$
\begin{equation*}
\left\langle h_{1} f_{1} k g\right\rangle_{D}(\boldsymbol{J}, \boldsymbol{h}) \leqslant\left\langle h_{1} f_{1}\right\rangle_{D}(\boldsymbol{J}, \boldsymbol{h})\langle k g\rangle_{D}(\boldsymbol{J}, \boldsymbol{h}) \tag{2.5}
\end{equation*}
$$

if $h_{1}$ as above and $k$ positive monotone increasing on $I$,

$$
\begin{equation*}
\left\langle h f_{1}\right\rangle_{D}(\boldsymbol{J}, \boldsymbol{h}) \leqslant\left\langle f_{1}\right\rangle_{D^{\prime}}\left(\boldsymbol{J}^{*}, \boldsymbol{h}^{*}\right)\langle\boldsymbol{h}\rangle_{D}(\boldsymbol{J}, \boldsymbol{h}) \tag{2.6}
\end{equation*}
$$

if $h$ is positive on $I$ and $J_{i j}^{* \alpha}=J_{i j}^{\alpha}, h_{i}^{* \alpha}=h_{i}^{\alpha}, 1 \leqslant \alpha \leqslant D^{\prime}$.
Proof. Let us begin with the proof of (2.3). We write $\left\langle f_{1} g h\right\rangle_{D}$ using the decomposition of the Hamiltonian in two Hamiltonians for spins of lower dimensions. We get

$$
\left\langle f_{1} g h\right\rangle_{D}=\frac{\int \Pi_{i=1}^{N} \mathrm{~d} \mu\left(\theta_{i}\right) Z_{D^{\prime}}(\boldsymbol{\theta}) Z_{D^{\prime}}(\boldsymbol{\theta})\left\langle f_{1}\right\rangle_{D^{\prime}}(\boldsymbol{\theta})\langle g\rangle_{D^{\prime}}(\boldsymbol{\theta}) h(\boldsymbol{\theta})}{\int \Pi_{i=1}^{N} \mathrm{~d} \mu\left(\theta_{i}\right) Z_{D^{\prime}}(\boldsymbol{\theta}) Z_{D^{\prime \prime}}(\boldsymbol{\theta})}
$$

which is straightforward and where $Z_{D^{\prime}}$ is the partition function of the model with Hamiltonian $H_{D^{\prime}}\left(\boldsymbol{J}^{\prime}, \boldsymbol{h}^{\prime}\right)$ and so on. We know that $\left\langle f_{1}\right\rangle_{D^{\prime}}(\boldsymbol{\theta})$ and $\langle g\rangle_{D^{\prime \prime}}(\boldsymbol{\theta})$ are positive functions by propositions 1 and 2 because $-H_{D^{\prime}}$ and $f_{1}$ belong to $F_{D^{\prime}}$ and $-H_{D^{\prime \prime}}$ and $g$ belong to $F_{D^{\prime \prime}}$. This implies that $\left\langle f_{1} g h\right\rangle_{D} \geqslant 0$. If we choose $g \equiv 1$, and apply the second inequality of proposition 1 , which expresses a monotonicity property of $\left\langle h f_{1}\right\rangle_{D^{\prime}}$ as explained before, then we get

$$
0 \leqslant\left\langle f_{1}\right\rangle_{D^{\prime}}\left(\boldsymbol{J}^{\prime}, \boldsymbol{h}^{\prime}\right)(\boldsymbol{\theta}) \leqslant \max _{\boldsymbol{\theta}}\left\langle f_{1}\right\rangle_{D^{\prime}}\left(\boldsymbol{J}^{\prime}, \boldsymbol{h}^{\prime}\right)(\boldsymbol{\theta})=\left\langle f_{1}\right\rangle_{D^{\prime}}\left(\boldsymbol{J}^{*}, \boldsymbol{h}^{*}\right)
$$

Now $\left\langle f_{1}\right\rangle_{D^{\prime}}\left(\boldsymbol{J}^{*}, \boldsymbol{h}^{*}\right)$ is independent of $\boldsymbol{\theta}$ and we have just proved (2.6).
The proofs of (2.4) and (2.5) are similar and we prove only (2.5). We begin as above and we write

$$
\left\langle h_{1} f_{1} k g\right\rangle_{D}=\frac{\int \Pi_{i=1}^{N} \mathrm{~d} \mu\left(\theta_{i}\right) Z_{D^{\prime}}(\boldsymbol{\theta}) Z_{D^{\prime \prime}}(\boldsymbol{\theta}) h_{1}(\boldsymbol{\theta})\left\langle f_{1}\right\rangle_{D^{\prime}}(\boldsymbol{\theta}) k(\boldsymbol{\theta})\langle g\rangle_{D^{\prime}}(\boldsymbol{\theta})}{\int \Pi_{i=1}^{N} \mathrm{~d} \mu\left(\theta_{i}\right) Z_{D^{\prime}}(\boldsymbol{\theta}) Z_{D^{n}}(\boldsymbol{\theta})}
$$

Again applying propositions 1 or 2 we know that $f_{1}(\boldsymbol{\theta})$ is a positive decreasing function of $\boldsymbol{\theta}$, because $\cos \theta$ and consequently the coupling constants of the Hamiltonian $-H_{D^{\prime}}$
are positive decreasing functions of $\boldsymbol{\theta}$. In the same manner $g(\boldsymbol{\theta})$ is a positive increasing function. On the other hand we can write

$$
\left\langle h_{1} f_{1} k g\right\rangle_{D}=\int \mathrm{d} \nu h_{1} f_{1} k g
$$

with

$$
p(\theta)=\frac{Z_{D^{\prime}}(\boldsymbol{\theta}) Z_{D^{r}}(\boldsymbol{\theta})}{\int \Pi_{i=1}^{N} \mathrm{~d} \mu\left(\theta_{i}\right) Z_{D^{\prime}}(\boldsymbol{\theta}) Z_{D^{\prime}}(\boldsymbol{\theta})}
$$

Let us suppose for an instant that $p(\theta)$ satisfies the property (2.2) which is required for the application of proposition 3. Then we obtain the desired result by applying this proposition to the functions $h_{1} f_{1}$ and kg . It remains thus to check the property (2.2) for the function $p(\theta)$. Clearly we can drop the normalization factor and we just have to prove that

$$
\begin{equation*}
Z_{D^{\prime}}(\boldsymbol{\psi} \vee \boldsymbol{\Phi}) Z_{D^{\prime}}(\boldsymbol{\psi} \wedge \boldsymbol{\Phi}) \geqslant Z_{D^{\prime}}(\boldsymbol{\psi}) Z_{D^{\prime}}(\boldsymbol{\Phi}) \quad \text { with } D^{\prime}=1 \text { or } 2 . \tag{2.7}
\end{equation*}
$$

Let us take $D^{\prime}=1$. A similar proof holds for $D^{\prime}=2$ or $D^{\prime \prime}=1,2$. Consequently we drop the index 1 from now on. First we prove a property about positive monotone functions which implies, together with proposition 1 , the desired property for $p(\theta)$.
Lemma. Let $q_{i}$ be a positive monotone decreasing function [ $0, \pi / 2$ ], $i=1, \ldots, N$. Then for all $\psi$ and $\boldsymbol{\Phi} \in I$ and $B \subset \Lambda$

$$
f_{B}(\boldsymbol{\Phi} \vee \boldsymbol{\psi})+f_{B}(\boldsymbol{\Phi} \wedge \boldsymbol{\psi}) \geqslant f_{B}(\boldsymbol{\Phi})+f_{B}(\boldsymbol{\psi})
$$

with $f_{B}=\prod_{i \in B} f_{i}$. The lemma is also true, if the $q_{i}$ are positive monotone decreasing on [ $0, \pi / 2$ ].

Proof. Let us put $f_{B}(\Phi \wedge \psi)=a, f(\Phi \vee \psi)=b, f(\Phi)=c$ and $f(\psi)=d$. By hypothesis $a, b, c$ and $d$ are non-negative numbers with $a \geqslant c, a \geqslant d$ and $a b=c d$. These four numbers satisfy $a+b \geqslant c+d$ which proves the lemma. (See lemma 2 in Preston 1974).
We now prove (2.7) which is equivalent to

$$
\frac{Z(\Phi \wedge \psi)}{Z(\Phi)} / \frac{Z(\psi)}{Z(\Phi \vee \psi)} \geqslant 1
$$

The left-hand side of this last expression is
$\frac{\left\langle\exp \left[-\beta H\left(J^{\prime}(\boldsymbol{\Phi} \wedge \boldsymbol{\psi})-J^{\prime}(\boldsymbol{\Phi}), h^{\prime}(\boldsymbol{\Phi} \wedge \boldsymbol{\psi})-h^{\prime}(\boldsymbol{\phi})\right)\right]\right\rangle\left(J^{\prime}(\boldsymbol{\Phi}), h^{\prime}(\boldsymbol{\Phi})\right)}{\left\langle\exp \left[-\beta H\left(J^{\prime}(\boldsymbol{\psi})-J^{\prime}(\boldsymbol{\Phi} \vee \boldsymbol{\psi}), h^{\prime}(\boldsymbol{\psi})-h^{\prime}(\boldsymbol{\Phi} \vee \boldsymbol{\psi})\right)\right]\right\rangle\left(J^{\prime}(\boldsymbol{\Phi} \vee \boldsymbol{\psi}), h^{\prime}(\boldsymbol{\Phi} \vee \boldsymbol{\psi})\right)}$
$\beta$ being the inverse temperature. Using the lemma we get

$$
\begin{equation*}
J^{\prime}(\Phi \wedge \psi)-J^{\prime}(\Phi) \geqslant J^{\prime}(\psi)-J^{\prime}(\Phi \vee \psi) \geqslant 0 \tag{2.8}
\end{equation*}
$$

and a similar expression for $h^{\prime}(\boldsymbol{\Phi})$. This implies that $\exp [\ldots]$ belongs to $F_{1}$ and we obtain the following lower bound

$$
\begin{aligned}
& \left(\exp \left[-\beta H\left(J^{\prime}(\boldsymbol{\Phi} \wedge \boldsymbol{\psi})-J^{\prime}(\boldsymbol{\Phi}), h^{\prime}(\boldsymbol{\Phi} \wedge \boldsymbol{\psi})-h^{\prime}(\boldsymbol{\phi})\right)\right]\right\rangle\left(J^{\prime}(\boldsymbol{\Phi}), h^{\prime}(\boldsymbol{\Phi})\right) \geqslant \\
& \left\langle\exp \left[-\beta H\left(J^{\prime}(\boldsymbol{\psi})-J^{\prime}(\boldsymbol{\Phi} \vee \boldsymbol{\psi}), h^{\prime}(\boldsymbol{\psi})-h^{\prime}(\boldsymbol{\Phi} \vee \boldsymbol{\psi})\right)\right]\right\rangle\left(J^{\prime}(\boldsymbol{\Phi}), h^{\prime}(\boldsymbol{\Phi})\right) \geqslant \\
& \left(\exp \left[-\beta H\left(J^{\prime}(\boldsymbol{\psi})-J^{\prime}(\boldsymbol{\Phi} \vee \boldsymbol{\psi}), h^{\prime}(\boldsymbol{\psi})-h^{\prime}(\boldsymbol{\Phi} \vee \boldsymbol{\psi})\right)\right]\right\rangle\left(J^{\prime}(\boldsymbol{\Phi} \vee \boldsymbol{\psi}), h^{\prime}(\boldsymbol{\Phi} \vee \boldsymbol{\psi})\right)
\end{aligned}
$$

by applying first (2.8) and then proposition 1 . This lower bound implies (2.7) and thus (2.5) is proved.

Remarks. In the proof of proposition 4 we used only propositions 1 to 3 . We can consider more general Hamiltonians than (2.1). In particular we can introduce threebody interactions and so on. The only property which is required is that $-H_{D^{\prime}} \in F_{D^{\prime}}$ and $-H_{D^{\prime \prime}} \in F_{D^{\prime \prime}}$. We may also take other single-spin distributions than $\mathrm{d} s$ for the $D$ dimensional spin $S$. The only property which we need is that the distribution $\mathrm{d} s$ satisfies $\mathrm{d} s=\mathrm{d} u \mathrm{~d} v \mathrm{~d} \mu(\theta)$ with some probability measure $\mathrm{d} \mu(\theta), \mathrm{d} u$ and $\mathrm{d} v$ being defined as above.

## 3. Examples

In this section we consider examples where we can apply our method. The different results which we obtain are simply a translation of proposition 4 in particular situations. Therefore we do not give further details. At the end of the section we derive one more result valid for all $D$ which implies the announced results (i) and (iii) of $\S 1$. We begin with $D=2$.

## 3.1. $D=2$

In this case $H_{D}(\boldsymbol{J}, \boldsymbol{h})$ becomes

$$
\begin{align*}
& -H_{2}\left(J^{1}, J^{2}, h^{1}, h^{2}\right) \\
& \quad=\sum_{i \neq j}\left(J_{i j}^{1} \cos \theta_{i} \cos \theta_{j}+J_{i j}^{2} \sin \theta_{l} \sin \theta_{j}\right)+\sum_{t}\left(h_{i}^{1} \cos \theta_{t}+h_{1}^{2} \sin \theta_{t}\right) \tag{3.1}
\end{align*}
$$

The decomposition of a $\operatorname{spin} S=\left(S^{1}, S^{2}\right)=(\cos \theta U, \sin \theta V)$ has been treated as an example in the last section. In this way for $H_{D^{\prime}}\left(J^{\prime}, h^{\prime 1}\right)$ and $H_{D^{\prime \prime}}\left(J^{\prime \prime 2}, h^{\prime \prime 2}\right)$ we get

$$
-H_{D^{\prime}=1}\left(J^{\prime 1}, h^{\prime 1}\right)=\sum_{i \neq j} J_{i j}^{1} \cos \theta_{i} \cos \theta_{j} U_{i} U_{j}+\sum_{i} h_{i}^{1} \cos \theta_{i} U_{i}
$$

and

$$
-H_{D^{\prime \prime}=1}\left(J^{\prime \prime 2}, h^{\prime \prime 2}\right)=\sum_{i \neq j} J_{i j}^{2} \sin \theta_{i} \sin \theta_{j} V_{i} V_{i}+\sum_{i} h_{i}^{2} \sin \theta_{i} V_{i}
$$

where $\theta_{l} \in[0, \pi / 4]$ and $U_{i}$ and $V_{l}$ are now one-dimensional spins. Applying proposition 4 we obtain proposition 5 .
Proposition 5. Let us consider a model defined by (3.1) with $J^{1} \geqslant 0, J^{2} \geqslant 0, h^{1} \geqslant 0$ and $h^{2} \geqslant 0$. Then we have

$$
\begin{aligned}
& \left\langle S_{A}^{i} S_{B}^{\prime}\right\rangle \geqslant\left\langle S_{A}^{\prime}\right\rangle\left\langle S_{B}^{l}\right\rangle, \quad i=1,2 \\
& \left\langle S_{A}^{1} S_{B}^{2}\right\rangle \leqslant\left\langle S_{A}^{1}\right\rangle\left\langle S_{B}^{2}\right\rangle \\
& \left\langle S_{A}^{1} S_{B}^{2}\right\rangle \geqslant 0 . \\
& \left\langle S_{A}^{1}\right\rangle_{2}\left(J^{1}, J^{2}, h^{1}, h^{2}\right) \leqslant\left\langle U_{A}\right\rangle_{1}\left(J^{1}, h^{1}\right) \equiv\left\langle S_{A}^{1}\right\rangle_{1}\left(J^{1}, h^{1}\right) \\
& \left\langle S_{1} \cdot S_{j}\right\rangle \geqslant\left\langle S_{i}\right\rangle \cdot\left\langle S_{j}\right\rangle
\end{aligned}
$$

where $S_{A}^{1}=\Pi_{i \in A} S_{i}^{1}, A \subset \Lambda$, and the dot $\cdot$ means the scalar product.
Remarks. (i) The first four inequalities follow respectively from (2.4), (2.5), (2.3) and (2.6) of proposition 4. The last inequality is an immediate consequence of the first one.
(ii) These inequalities have a simple physical meaning. Let us consider a model defined by $-H_{2}\left(J^{1}, J^{2}, h, 0\right), J^{1} \geqslant 0, J^{2} \geqslant 0, h \geqslant 0$ and for example the magnetization

$$
\begin{equation*}
m_{\Lambda}\left(J^{1}, J^{2}, h\right)=\frac{1}{|\Lambda|} \sum_{i \in \Lambda}\left\langle S_{i}^{1}\right\rangle_{2}\left(J^{1}, J^{2}, h\right) \tag{3.2}
\end{equation*}
$$

where $|\Lambda|$ is the number of elements of the set $\Lambda$ on which the model is defined. It is easy to see that the inequalities of proposition 5 imply that the magnetization is a positive function which increases if $h$ or $J^{1}$ increase but which decreases if $J^{2}$ increases. These properties are of course also valid whenever the thermodynamic limit of (3.2) exists. (iii) We have noted already that we can take more general interactions. For example

$$
-H_{2}=\sum_{\phi \neq A \in \Lambda} J_{A}^{1} S_{A}^{1}+J_{A}^{2} S_{A}^{2}+\sum_{i \in \Lambda} \lambda_{i}\left(S_{i}^{1}\right)^{2}
$$

with $J_{A}^{i} \geqslant 0, i=1,2$ and any $\lambda_{i}$. The $\lambda_{i}$ describe an inhomogeneous crystal field. (iv) Recently Monroe (1975) proved part of proposition 5 for two-body interactions using a different technique. Bricmont (1975) also proved proposition 5 by yet another method. (v) We can derive other inequalities by using the rotational symmetry of the interactions if $J^{1}=J^{2}$. In this case we can write (3.1) as follows

$$
\begin{equation*}
-H_{2}(J, h)=-H_{2}\left(J, J, h^{1}, h^{2}\right)=\sum_{i \neq j} J_{i j} S_{i} \cdot S_{j}+\sum_{i} h_{i} \cdot S_{i} . \tag{3.3}
\end{equation*}
$$

If we perform a rotation $R$ about $\pi / 4$, a spin $S=\left(S^{1}, S^{2}\right)$ becomes $T=R S=\left(T^{1}, T^{2}\right)=$ $\frac{1}{2} \sqrt{2}\left(\left(S^{1}-S^{2}\right),\left(S^{1}+S^{2}\right)\right)$. Using $R S_{i} \cdot R S_{j}=S_{i} . S_{j}$ and the invariance of $\mathrm{d} s$ under rotation, we obtain for example the relation

$$
\left\langle\left(S^{1}+S^{2}\right)_{A}\right\rangle_{2}\left(J, J, h^{1}, h^{2}\right)=(\sqrt{2})^{|A|}\left\langle T_{A}^{2}\right\rangle_{2}\left(J, J, \frac{1}{2} \sqrt{2}\left(h^{1}-h^{2}\right), \frac{1}{2} \sqrt{2}\left(h^{1}+h^{2}\right)\right)
$$

By this method we immediately get proposition 6 from proposition 5 .
Proposition 6. Let us consider a model defined by (3.3) with $J_{i j}=J_{i j}^{1}=J_{i j}^{2} \geqslant 0, h^{1} \geqslant\left|h^{2}\right|$. Then we have

$$
\begin{aligned}
& \left\langle\left(S^{1}+S^{2}\right)_{A}\left(S^{1}+S^{2}\right)_{B}\right\rangle_{2} \geqslant\left\langle\left(S^{1}+S^{2}\right)_{A}\right\rangle_{2}\left\langle\left(S^{1}+S^{2}\right)_{B}\right\rangle_{2} \\
& \left\langle\left(S^{1}-S^{2}\right)_{A}\left(S^{1}-S^{2}\right)_{B}\right\rangle_{2} \geqslant\left\langle\left(S^{1}-S^{2}\right)_{A}\right\rangle_{2}\left\langle\left(S^{1}-S^{2}\right)_{B}\right\rangle_{2} \\
& \left\langle\left(S^{1}-S^{2}\right)_{A}\left(S^{1}+S^{2}\right)_{B}\right\rangle_{2} \leqslant\left\langle\left(S^{1}-S^{2}\right)_{A}\right\rangle_{2}\left\langle\left(S^{1}+S^{2}\right)_{B}\right\rangle_{2}
\end{aligned}
$$

Corollary 7. Under the conditions of proposition 6 we have

$$
\begin{aligned}
& \left\langle S_{i}^{1} S_{j}^{1}\right\rangle_{2}-\left\langle S_{i}^{1}\right\rangle_{2}\left\langle S_{j}^{1}\right\rangle_{2} \leqslant\left\langle S_{i}^{2} S_{j}^{2}\right\rangle_{2}-\left\langle S_{i}^{2}\right\rangle_{2}\left\langle S_{j}^{2}\right\rangle_{2} \\
& \left(\left\langle S_{i}^{1} S_{j}^{1}\right\rangle_{2}-\left\langle S_{i}^{1}\right\rangle_{2}\left\langle S_{j}^{1}\right\rangle_{2}\right)+\left(\left\langle S_{i}^{2} S_{j}^{2}\right\rangle_{2}-\left\langle S_{i}^{2}\right\rangle_{2}\left\langle S_{j}^{2}\right\rangle_{2}\right) \\
& \quad \geqslant\left(\left\langle S_{i}^{1} S_{j}^{2}\right\rangle_{2}-\left\langle S_{i}^{1}\right\rangle_{2}\left\langle S_{j}^{2}\right\rangle_{2}\right)+\left(\left\langle S_{j}^{1} S_{i}^{2}\right\rangle_{2}-\left\langle S_{j}^{1}\right\rangle_{2}\left\langle S_{i}^{2}\right\rangle_{2}\right)
\end{aligned}
$$

Remarks. Let us consider the model defined by (3.3) with $J \geqslant 0, h_{1}=h \geqslant 0$ and $h_{2}=0$. The parallel susceptibility $\chi^{\prime \prime}$ is the derivative of the magnetization with respect to the magnetic field $h$ (see (3.2)), i.e.

$$
\chi_{\Lambda}^{\|}=\frac{\partial m_{\Lambda}}{\partial h}=k T \frac{1}{|\Lambda|} \sum_{i, j \in \Lambda}\left(\left\langle S_{i}^{1} S_{j}^{1}\right\rangle-\left\langle S_{i}^{1}\right\rangle\left\langle S_{j}^{1}\right\rangle\right) .
$$

Here $T$ stands for the temperature and $k$ is the Boltzmann's constant. One also usually defines a transverse susceptibility $\chi^{\perp}$ by

$$
\chi_{\Lambda}^{\frac{1}{\Lambda}}=k T \frac{1}{|\Lambda|} \sum_{t, j \in \Lambda}\left(\left\langle S_{i}^{2} S_{j}^{2}\right\rangle-\left\langle S_{i}^{2}\right\rangle\left\langle S_{j}^{2}\right\rangle\right)
$$

We thus obtain from the first inequality of the corollary that the parallel susceptibility is dominated by the transverse susceptibility. Both are positive by the first inequality of proposition 5. These properties are also true at the thermodynamical limit.

## 3.2. $D=3$

In this case $D^{\prime}=1$ and $D^{\prime \prime}=2$, and

$$
\mathrm{d} s=\mathrm{d} u \mathrm{~d} v \sin \theta \mathrm{~d} \theta
$$

It is important to realize in this case that the decomposition of $S=\left(S^{1}, \ldots, S^{3}\right)=$ $(\cos \theta U, \sin \theta V)$ is not the only possible one. We can, for example, collect the first and the third components of $S$ in order to form another two-dimensional spin and so forth. There is also no unique choice of the conditions on $\boldsymbol{J}$ and $\boldsymbol{h}$. We consider only two cases. For example we have propositions 8 and 9 .
Proposition 8. Let us consider a model defined by (2.1) with $D=3, J_{i j}^{1} \geqslant J_{i j}^{2} \geqslant J_{i j}^{3} \geqslant 0$, $h_{i}^{1} \geqslant 0$ and $h_{i}^{2}=h_{t}^{3}=0$. Then the following is true:

$$
\begin{array}{ll}
\left\langle S_{A}^{k} S_{B}^{k}\right\rangle_{3} \geqslant\left\langle S_{A}^{k}\right\rangle_{3}\left(S_{B}^{k}\right\rangle_{3} & k=1,2,3 \\
\left\langle S_{A}^{1} S_{B}^{k}\right\rangle_{3} \leqslant\left\langle S_{A}^{1}\right\rangle_{3}\left(S_{B}^{k}\right\rangle_{3} & k=2,3 \\
\left\langle S_{A}^{1} S_{B}^{2} S_{C}^{3}\right\rangle_{3} \geqslant 0 & \\
\left\langle S_{A}^{1}\right\rangle_{3}\left(J^{1}, J^{2}, J^{3}, h^{1}\right) \leqslant\left\langle S_{A}^{1}\right\rangle_{2}\left(J^{1}, J^{2}, h^{1}\right) \\
\left\langle S_{1} \cdot S_{j}\right\rangle_{3} \geqslant\left\langle S_{\imath}\right\rangle_{3} \cdot\left\langle S_{j}\right\rangle_{3} . &
\end{array}
$$

On the other hand, if we have isotropic two-body interactions we can also derive new inequalities by using the method of proving proposition 6.
Proposition 9. Let us consider a model defined by (2.1) with $D=3, J_{i j}^{1}=J_{i j}^{2}=J_{i j}^{3} \geqslant 0$, $h_{i}^{1} \geqslant 0$ and $h_{i}^{2}=h_{i}^{3}=0$. Then the following is true:

$$
\begin{array}{ll}
\left\langle\left(S^{1}+S^{k}\right)_{A}\left(S^{1}+S^{k}\right)_{B}\right\rangle_{3} \geqslant\left\langle\left(S^{1}+S^{k}\right)_{A}\right\rangle_{3}\left\langle\left(S^{1}+S^{k}\right)_{B}\right\rangle_{3} & k=2,3 \\
\left\langle\left(S^{1}-S^{k}\right)_{A}\left(S^{1}-S^{k}\right)_{B}\right\rangle_{3} \geqslant\left\langle\left(S^{1}-S^{k}\right)_{A}\right\rangle_{3}\left\langle\left(S^{1}-S^{k}\right)_{B}\right\rangle_{3} & k=2,3 \\
\left\langle\left(S^{1}-S^{k}\right)_{A}\left(S^{1}+S^{k}\right)_{B}\right\rangle_{3} \leqslant\left\langle\left(S^{1}-S^{k}\right)_{A}\right\rangle_{3}\left(\left(S^{1}+S^{k}\right)_{B}\right\rangle_{3} & k=2,3
\end{array}
$$

and in particular

$$
\left\langle S_{\imath}^{1} S_{j}^{1}\right\rangle_{3}-\left\langle S_{\imath}^{1}\right\rangle_{3}\left\langle S_{j}^{1}\right\rangle_{3} \leqslant\left\langle S_{t}^{k} S_{j}^{k}\right\rangle_{3} \quad k=2,3
$$

Remark. The interpretation of these two propositions is like that of propositions 5 and 6 and corollary 7.
3.3. $D=4$

Here $D^{\prime}=D^{\prime \prime}=2$ and

$$
\mathrm{d} s=\mathrm{d} u \mathrm{~d} v 2 \sin \theta \cos \theta \mathrm{~d} \theta
$$

We can make the same remarks as above. We obtain for example the analogue of proposition 5 with $J^{1}=J^{2} \geqslant J^{3}=J^{4} \geqslant 0$ and $h^{1} \geqslant 0, h^{2}=h^{3}=h^{4}=0$.

## 3.4.

If the dimension of the spin is bigger than 4 , we cannot apply our method. However we can prove the following result for $D>3$.
Proposition 10. Let us consider the model defined by (2.1) with $J^{1} \geqslant J^{2} \geqslant 0, h^{1} \geqslant 0$, $h^{2}=\ldots=h^{D}=0$ for any $D \geqslant 3$. Then we have

$$
\begin{equation*}
\left\langle S_{A}^{1}\right\rangle_{1}\left(J^{1}, h^{1}\right) \geqslant\left\langle S_{A}^{1}\right\rangle_{2}\left(J^{1}, J^{2}, h^{1}\right) \geqslant\left\langle S_{A}^{1}\right\rangle_{D}\left(J^{1}, \ldots, J^{D}, h^{1}\right) \tag{3.4}
\end{equation*}
$$

Proof. The first inequality is a result of proposition 5. Let $D \geqslant 3$. We decompose the $\operatorname{spin} S$ with $D^{\prime}=2$ and $D^{\prime \prime}=D-2$. The proof then reduces to that of (2.6) of proposition 4.

Remarks. (i) Let us consider isotropic ferromagnetic models characterized by $D, J>0$ and $h \geqslant 0$. By convention we choose the magnetic field ( $h, 0, \ldots, 0$ ). We take the thermodynamical limit and denote the magnetization by $m(D, J, h)$. Using proposition 10 we get

$$
m(1, J, h) \geqslant m(2, J, h) \geqslant m(D, J, h) \geqslant 0, \quad D \geqslant 3 .
$$

The spontaneous magnetization is by definition

$$
\lim _{h \rightarrow 0+} m(D, J, h) \equiv m^{+}(D, J)
$$

Thus we have

$$
\begin{equation*}
m^{+}(1, J) \geqslant m^{+}(2, J) \geqslant m^{+}(D, J) \geqslant 0, \quad D \geqslant 3 . \tag{3.5}
\end{equation*}
$$

The two results (i) and (iii) of § 1 then follow directly from (3.5).
(ii) The inequalities (3.4) are to be expected because the phase space of the spin $S$ becomes larger with $D$. For isotropic systems we expect

$$
\left\langle S_{i} \cdot S_{j}\right\rangle_{D} \geqslant\left\langle S_{i} \cdot S_{j}\right\rangle_{D+1}
$$

## 4. Lower bounds for models with $\boldsymbol{D}=2$

In this last section we compare the magnetizations of an anisotropic $X-Y$ model and of an Ising model. The result gives a simple proof of the existence of a first-order phase transition of an anisotropic ferromagnetic $X-Y$ model in two or more dimensions. The proof is based on our method of $\S 2$ and a judicious choice of the reference frame inspired by our remarks of $\S 3$ on the possibility of performing a rotation of the spins. We start with the model defined by (3.1) and we choose $J^{1} \geqslant\left|J^{2}\right| \geqslant 0, h^{1} \geqslant 0, h^{2}=0$. It is convenient to write $J^{1}=J, J^{2}=\gamma J$ and (3.1) as follows:

$$
\begin{align*}
-H_{2}(J, \gamma, h)= & \sum_{i \neq j} J_{i j}\left[\frac{1}{2}\left(1+\gamma_{i j}\right)\right]\left(S_{i}^{1} S_{j}^{1}+S_{i}^{2} S_{j}^{2}\right) \\
& +\sum_{i \neq j} J_{i j}\left[\frac{1}{2}\left(1-\gamma_{i j}\right)\right]\left(S_{i}^{1} S_{j}^{1}-S_{i}^{2} S_{j}^{2}\right)+\sum_{i} h_{i} S_{i}^{1} \tag{4.1}
\end{align*}
$$

Proposition 11. Let us consider the model defined by (4.1) and $J \geqslant 0, h \geqslant 0$ and $|\gamma|<1$. Then for all $A \subset \Lambda$

$$
\left\langle S_{A}^{1}\right\rangle_{2}(J, \gamma, h) \geqslant\left(\frac{1}{2}\right)^{|A|}\left\langle S_{A}^{1}\right\rangle_{1}\left[\frac{1}{4} J(1-|\gamma|), \frac{1}{2} h\right]
$$

where $|A|$ is the number of elements of the set $A$.
Remarks. (i) From the proposition we obtain for the magnetization the relation

$$
m(2, J, \gamma, h) \geqslant \frac{1}{2} m\left[1, \frac{1}{4} J(1-|\gamma|), \frac{1}{2} h\right] .
$$

Therefore the spontaneous magnetization satisfies

$$
m^{+}(2, J, \gamma) \geqslant \frac{1}{2} m^{+}\left[1, \frac{1}{4} J,(1-|\gamma|)\right] .
$$

But the spontaneous magnetization of an Ising model is non-zero at low enough temperature if $d \geqslant 2$. We have thus proved result (ii) of the introduction.
(ii) Proposition 11 was first proved by Kunz (1974) using a different method in order to prove result (ii).
Proof. In this proposition we consider the projection of the spin along the direction given by the magnetic field. We do not apply our method directly. First we mix the two components of the spin by choosing a new reference frame in such a way that the magnetic field is now ( $\frac{1}{2} \sqrt{2} h, \frac{1}{2} \sqrt{2} h$ ); the new components of the spin are $\left(T^{1}, T^{2}\right)$ and

$$
\begin{aligned}
-H_{2}(J, \gamma, h)= & \sum_{i \neq j} J_{i j}\left[\frac{1}{2}\left(1+\gamma_{i j}\right)\right]\left(T_{i}^{1} T_{j}^{1}+T_{i}^{2} T_{j}^{2}\right) \\
& +\sum_{i \neq j} J_{i j}\left[\frac{1}{2}\left(1-\gamma_{i j}\right)\right]\left(T_{i}^{1} T_{j}^{2}+T_{i}^{2} T_{j}^{1}\right)+\sum_{i} \frac{1}{2} \sqrt{2} h_{i}\left(T_{i}^{1}+T_{i}^{2}\right)
\end{aligned}
$$

In the first step we used the fact that $\mathrm{d} s$ is invariant under rotation. In the next step we apply our method. But now the Hamiltonian $H_{2}(J, \gamma, h)$ does not split into two Hamiltonians of the Ising type which are coupled only by the variables $\theta$ as before. Owing to our choice of the reference frame we also get ferromagnetic couplings between the two Ising systems occurring in the decomposition or, in other words, only one Ising system with spins $U_{i}$ and $V_{i}$ and with Hamiltonian

$$
\begin{align*}
&-\sum_{i \neq j} J_{i j}\left[\frac{1}{2}\left(1+\gamma_{i j}\right)\right]\left(\cos \theta_{i} \cos \theta_{j} U_{i} U_{j}+\sin \theta_{i} \sin \theta_{j} V_{i} V_{j}\right) \\
& \quad-\sum_{i \neq j} J_{i j}\left[\frac{1}{2}\left(1-\gamma_{i j}\right)\right]\left(\cos \theta_{i} \sin \theta_{j} U_{i} V_{j}+\sin \theta_{i} \cos \theta_{j} V_{i} U_{j}\right) \\
& \quad-\sum_{i} h_{i} \frac{1}{2} \sqrt{2}\left(\cos \theta_{i} U_{i}+\sin \theta_{i} V_{i}\right) \tag{4.2}
\end{align*}
$$

We estimate $\left\langle\left(\frac{1}{2} \sqrt{2}\left(T^{1}+T^{2}\right)\right)_{A}\right\rangle_{2}(J, \gamma, h)$. We have

$$
\left\langle\left(T^{1}+T^{2}\right)_{A}\right\rangle_{2}=\frac{\int \Pi_{i=1}^{N} \mathrm{~d} \mu\left(\theta_{i}\right) Z_{1}\left(\Pi_{i \in A}\left(\cos \theta_{i} U_{i}+\sin \theta_{i} V_{i}\right)\right\rangle_{1}}{\int \Pi_{i=1}^{N} \mathrm{~d} \mu\left(\theta_{i}\right) Z_{1}}
$$

where $\mathrm{d} \mu\left(\theta_{i}\right)=(2 / \pi) \mathrm{d} \theta_{i},\langle\cdot\rangle_{1}$ is the average value computed with the Hamiltonian (4.2) and $Z_{1}$ is the corresponding partition function. We now note that $1 \pm \gamma_{i j} \geqslant 1-\left|\gamma_{i j}\right|$ so that applying proposition 1 gives:
$\left\langle\prod_{i \in A}\left(\cos \theta_{i} U_{i}+\sin \theta_{i} V_{i}\right)\right\rangle_{1} \geqslant\left\langle\prod_{i \in A}\left(\cos \theta_{i} U_{i}+\sin \theta_{i} V_{i}\right)\right\rangle_{1}^{+} \equiv C\left(\theta_{i}, \ldots, \theta_{N}\right)$
where $\langle\cdot\rangle_{1}^{+}$is the average value computed with the Hamiltonian given by (4.2) when we replace $1 \pm \gamma_{i j}$ by $1-\left|\gamma_{i j}\right|$. Now we note that the function $C\left(\theta_{1}, \ldots, \theta_{N}\right)$ is invariant, if we change $\theta_{i}$ in $\pi / 2-\theta_{i}$. This implies that

$$
\min _{\substack{\theta_{1}, \ldots, \theta_{N} \\ 0 \leqslant \theta_{i} \leqslant \pi / 2}} C\left(\theta_{1}, \ldots, \theta_{N}\right)=\min _{\substack{\theta, \ldots, \theta_{N} \\ 0 \leqslant \theta_{i} \leqslant \pi / 4}} C\left(\theta_{1}, \ldots, \theta_{N}\right) .
$$

But on the interval $[0, \pi / 4], \cos \theta \geqslant \frac{1}{2} \sqrt{2}$ and $\sin \theta \geqslant 0$. By applying proposition 1 again, we get:

$$
C\left(\theta_{1}, \ldots, \theta_{N}\right) \geqslant\left(\frac{1}{2} \sqrt{2}\right)^{|A|}\left(S_{A}^{1}\right\rangle_{[ }\left[\frac{1}{4} J(1-|\gamma|), \frac{1}{2} h\right]
$$

where now the average value is computed with

$$
-H_{1}\left[\frac{1}{4} J(1-|\gamma|), \frac{1}{2} h\right]=\sum_{i \neq j} J_{i j}\left[\frac{1}{4}\left(1-\left|\gamma_{i j}\right|\right)\right] S_{i}^{1} S_{j}^{1}+\sum_{i} \frac{1}{2} h_{i} S_{i}^{1}
$$

## Acknowledgments

One of the authors would like to thank J Bricmont for a very stimulating discussion and correspondence and $P$ Blanchard for very useful comments and very helpful suggestions regarding the redaction. After finishing this work we received a preprint of F Dunlop which contains similar results. We would like to thank F Dunlop for sending us his work. One of us (PAV) thanks the Department of Mathematics and Physics of Princeton University for their kind hospitality.

## References

Bricmont J 1975 Preprint UCL-ITP-76/01 Louvain
Fortuin C M, Kasteleyn P W and Ginibre J 1971 Commun. Math. Phys. 22 89-103
Ginibre J 1970 Commun. Math. Phys. 16 310-28
Griffiths R B 1967 J. Math. Phys. 8 478, 484
Holley R 1974 Commun. Math. Phys. 36 227-31
Kunz H 1974 in preparation
Kunz H, Pfister C E and Vuillermot P A 1975 Phys. Lett. 54A 428-30
Malishev V A 1975 Commun. Math. Phys. 40 75-82
Mermin N D 1967 J. Math. Phys. 8 1061-4
Monroe J L 1975 J. Math. Phys. 16 1809-12
Preston C J 1974 Commun. Math. Phys. 36 233-41
Stanley H E 1974 Phase Transitions and Critical Phenomena vol. 3 eds C Domb and M S Green (New York: Academic Press) pp 552-5
Vuillermot P A and Romerio M V 1975 Commun. Math. Phys. 41 281-8


[^0]:    || Supported by the Fond National Suisse de la Recherche Scientifique.
    § Work partly supported by the Département de l'Instruction Publique de la République et Canton de Neuchâtel and by the Holderbank-Stiftung zur Förderung der wissenschaftlichen Fortbildung, Holderbank, Switzerland.

