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Inequalities for some classical spin vector models 
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$. ZiF, Universitat Bielefeld, Bielefeld, West Germany 
8 Department of Physics, Princeton University, Princeton, NJ 08540 USA 

Received 1 April 1976, in final form 21 May 1976 

Abstract. Inequalities are derived for a class of lattice systems including classical aniso- 
tropic X- Y and Heisenberg ferromagnets. Inequalities relating different models are also 
established and we point out their connections with the existence problem of phase 
transitions. 

1. Introduction 

In the last few years correlation inequalities have been studied in several interesting 
directions in statistical mechanics and in constructive quantum field theory. We shall 
show in this paper how it is possible to combine the inequalities of Ginibre (1970) with 
those of Fortuin eta1 (197 1) (see also Holley 1974, Preston 1974) in order to obtain new 
inequalities. We shall consider explicit models of ferromagnetism. An abstract version 
of our results appeared in Kunz et a1 (1975). 

The models which we shall consider belong to the class of the classical spin vector 
models. They are defined on the lattice Zd, d = 1,2,  . . . as follows: to each r E Z d  we 
associate a vector S, = (S,',  . . . , S 3  of $ with unit length. We call it a D-dimensional 
(classical) spin; it is parametrized by the points of the unit sphere in i J f  and we choose 
for its distribution the normalized uniform measure on this sphere, written ds. The 
spins have ferromagnetic interactions. A typical Hamiltonian for the system defined on 
a finite subset A of Zd is 

D 

- H =  1 J;(s;sf + y  1 sfsp)+ h,S! 

Ji.= J'(l1 - j l )  20, 

[,#I a = 2  ieh 
I J E A  

with 

Irls 1% 
Here /i -j l  is the Euclidean distance between i and j .  The constant y describes some 
anisotropy in the interaction between two spins and h, is an external inhomogeneous 
magnetic field. For D = 1 , 2  or 3 we have respectively the king models, X -  Y models or 
Heisenberg models. We can apply our inequalities to obtain simply a number of 
rigorous results about phase transitions. 

11 Supported by the Fond National Suisse de la Recherche Scientifique. 
ll Work partly supported by the Ddpartement de I'Instruction Publique de la Rdpublique et Canton de 
Neuchltel and by the Holderbank-Stiftung zur Forderung der wissenschaftlichen Fortbildung, Holderbank, 
Switzerland. 
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(9 

(ii) 

(iii) 
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A simple proof of the absence of spontaneous magnetization for 0 > 2  
whenever this is true for D = 2 (see Mermin 1967, Vuillermot and Romerio 
1975). 
A proof of the existence of a spontaneous magnetization for the model with 
D = 2 and d B 2 if IyI < 1 at low enough temperatures (Kunz 1974, Malishev 
1975). 
A monotonicity property of the critical temperatures as a function of D 

Tc(l) 3 Tc(2) 3 Tc(D), 0 3 3 .  

Here T, is the temperature below which the spontaneous magnetization is 
non-zero. These inequalities were already empirically obtained from an 
analysis of series expansion (Stanley 1974). 

2. General results 

In this section we reveal our method from a general point of view and we shall consider 
particular examples in the subsequent sections. We begin with a short review of the 
known results about inequalities to be used extensively later. Our main result is 
formulated in proposition 4. 

All models which we consider are defined on a finite subset A with N elements (see 
0 1). We do not write this explicitly. The Hamiltonian of a model for D-dimensional 
spins is 

The interpretation of the parameters Jt and h: is as in 0 1. We write J for {J”}, J* for 
{q}, J” 3 0 for GB 0 for all i, j and so on. Expectation values are computed with the 
usual Gibbs distribution defined from (2.1) and written ( e  - s > ~ ( J ,  h)  or (. - Later we 
shall need the following results for D = 1 and D = 2 (Ginibre 1970). 

(i) D = 1. The spin S takes only two values *1 and its distribution is ds = 
i(S(S + 1) + S(S - 1)). Let Fl be the set of functions which can be expanded in powers of 
the functions SA = nicA Si, A c A, with positive coefficients only. For example if JB 0 
and h 3 0, exp(-H1(J, h) )  E Fl:  

Proposition 1. If -Hl(J, h )  E F1 and f, g E Fl ,  then 

V)l!J, h )  3 0 

(fg)1(J, h)3(f)l(J, h)(gh(J,  h ) .  
Remarks. These inequalities were first proved by Grifliths (1967). The first inequality 
says, for example, that the magnetization is positive in a ferromagnetic Ising model 
defined by (2.1) with J a 0  and h a 0. The second inequality says that this magnetiza- 
tion increases, if we increase the ferromagnetic couplings J 3  0 or the magnetic field h. 

(ii) D = 2. The spin S is described by S = (cos 8, sin e), Os 0 d 27r, and ds = 
(1/27r) de. Let 8 =(el , .  . . , O N ) ,  e, E [0, 2 ~ 1 ,  m = (ml, . . . , mN), mi E Z and m * 8 = 
XKl mi& Let F2 be the set of the functions which can be expanded in powers of 
cos m 8 with positive coefficients only. Examples of functions of F2 are cos(ei f ei) 
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(mk = 0, k # i, j ,  mi = 1 and mi = *l) and exp(-H2(J, h)) if J' 3 IJ21, h' 3 0, h2  = 0 
(H2(J, h )  has an expansion in terms of cos(8, f e,) with positive coefficients). 

Proposition 2.  If -H2(J, h )  E F2 and f, g E F2 then 

V>,(J, h )  3 0 

Vg)z(J, h )  3 V)2(4 h)(g)2(J, h ) .  
The physical meaning of these inequalities is the same as for D = 1. 

The starting-point of our method is to express a D-dimensional spin S =  
(S', . . . , S D )  by a family of two spins U and V of dimension D' and D" with 
D'+D" = D and to use the results known for D = 1 and 2.  This restricts the application 
of our method to D c 4, so long as we do not have a proposition like proposition 1 or 2 
for D > 2 .  For the same reason in the case D=4,  we have no choice for the 
decomposition and we must take D'= D"= 2. The D-dimensional spin S is also 
expressed as S = (U', V') with U' and V' vectors of length cos2f3 and sin28 respectively 
and in RD' and Lf" respectively. We rewrite this as follows 

S = (cos eU, sin ev), 0 c e s r / 2  

with U and V unit vectors (=spins) in WD' and Lf" respectively. We obtain for the spin 
distribution ds of one spin the factorization 

ds = du du dF(0) 

and for the Hamiltonian 

with 
&(J, h )  =HD,(J',  h ' )+HDgr(r ,  h") 

JY = J ;  cos 0, cos e,, 
J:;" = q. sin 0, sin e,, 

h j" = h f cos e,, 
hi'" = hf sin Si, D'+ 1 S a  D. 

l c a < D '  

Example for D = 2.  Here D' = D" = 1 and we get 

S = (cos OU, sin ev) 0 s e s 4 2  

ds = du du (2/7r) de. 

The measure du (or du) is the distribution of a spin of dimension one and thus 

At this point we note that cos 8 and sin 8 are positive monotone functions on 
[0,7r/2]. In order to elaborate this fact, we introduce a partial ordering on Z which is the 
product of N copies of EO, 7r/2]: + 6 Qi if and only if qi S ai, f = 1, . . . , N. It is easy to 
verify that Z becomes a distributive lattice. In particular each pair of elements + and Qi 
has a least upper bound (+ v e), = max(qi, 4,) and a greatest lower bound (+ A = 
mi@,, 4,). We say that a real function f in Z is increasing if and only if + c Qi j f (+) s 
f(q5). We shall later have measures dv(8) of the following type: 

du =i(S(U+ 1)+6(U- 1)). 

N 

d 4 8 )  = p @ )  n dp(80 
i = l  

with p ( 8 )  3 0 and satisfying 

P(+ v a l p ( +  * @I 3 p(+)p(Qi), VQi, + E I. 
Such measures create the nice property (Preston 1974). 
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Proposition 3. Let dv be a normalized measure on I defined as above. Then iff and g 
are both decreasing (increasing) on I 

Jdvfg 3 Idv f Idv  g.  

Iff is increasing and g decreasing, then the inequality is reversed. 
Remarks. This proposition was lirst proved by Fortuin et a1 (1971) in the case of a 
discrete measure. In the case of an Ising model defined by (2.1) the Gibbs distribution 
has property (2.2) if J S O .  

Proposition 4. Let D = 2,3 or 4. Let us suppose that HD(J, h )  can be decomposed as 
above with -HD,(J’, h’) E FD, and -HD,,(S’, a”) E FD,,, D’, D”= 1 or 2. Letf, E FD,, i = 1, 
2, and g E FD#*. Then 

We now are in a position to formulate and prove our main result. 

(hflg)D(J, b )  a 0 (2.3) 

(hflhZf2)D(J, b) (hLfl)D(J, h)(h2f2)D(J7 h )  (2.4) 

if h is a positive function on I, 

if hi is positive monotone decreasing on I, i = 1,2 .  

if hl as above and k positive monotone increasing on I, 

( h f i ) ~ ( J ,  h ) s ( f i ) ~ , ( J * ,  h*)(h>D(J, b )  (2.6) 

if h is positive on I and J;“ = JG, hr” = h f ,  1 s a  6 D’. 

Proof. Let us begin with the proof of (2.3). We write ( f lgh)D using the decomposition 
of the Hamiltonian in two Hamiltonians for spins of lower dimensions. We get 

which is straightforward and where ZD,  is the partition function of the model with 
Hamiltonian HD*(J’, h’) and so on. We know that ( f l ) D , ( e )  and ( g ) D . ( e )  are positive 
functions by propositions 1 and 2 because -HD, and f l  belong to FDi and -Hot# and g 
belong to FD,,. This implies that ( f lgh)D S 0. If we choose g = 1, and apply the second 
inequality of proposition 1, which expresses a monotonicity property of (hfl )D,  as 
explained before, then we get 

O S  ( ~ M J ’ ,  h’ ) (@)  m t x ( f l ) D ~ ’ ,  w e )  = ( f l > D ~ ,  A*). 

Now (fl>D,(J*, A * )  is independent of 8 and we have just proved (2.6). 

The proofs of (2.4) and (2.5) are similar and we prove only (2.5). We begin as above and 
we write 

Again applying propositions 1 or 2 we know thatfl(8) is a positive decreasing function 
of 0, because cos 8 and consequently the coupling constants of the Hamiltonian -Hot 
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are positive decreasing functions of 8. In the same manner g ( 8 )  is a positive increasing 
function. On the other hand we can write 

( h f l k g ) D  = /d. h d l k g  

P(’) = j n ~  d p  (ei)zD, (e)z,.(e)’ 

with 
zD, (e)zDw 

Let us suppose for an instant that p ( 8 )  satisfies the property (2.2) which is required for 
the application of proposition 3. Then we obtain the desired result by applying this 
proposition to the functions hJl  and kg. It remains thus to check the property (2.2) for 
the function p ( 8 ) .  Clearly we can drop the normalization factor and we just have to 
prove that 

(2.7) 
Let us take D’ = 1. A similar proof holds for D’ = 2 or D” = 1,2.  Consequently we drop 
the index 1 from now on. First we prove a property about positive monotone functions 
which implies, together with proposition 1, the desired property for p ( 8 ) .  

Lemma. Let qi be a positive monotone decreasing function [0,7r/2], i = 1, . . . , N. 
Then for all + and @E I and B c A 

&(+ v @)ZD,(+ A @) 3 ZD,(+)-&(@) with D’ = 1 or 2. 

f E ( @ v  + ) + f B ( @  A + ) ’ - f B ( @ ) + f B ( + )  

with f~ = n,.~f. The lemma is also true, if the 9, are positive monotone decreasing on 

Proof. Let us put f~(@ A +) = a ,  f ( @  v +) = b, f(@) = c and f(+) = d.  By hypothesis 
a, b, c and d are non-negative numbers with a 3 c, a 3 d and ab = cd. These four 
numbers satisfy a + b 2 c + d which proves the lemma. (See lemma 2 in Preston 1974). 

We now prove (2.7) which is equivalent to 

[O, +I. 

a@ A +)/zat’,) 3 1. 
Z ( @ )  

The left-hand side of this last expression is 

(exP[-PH(J’(@ A +)-J’(@), h’(@ A -hf (4) )1) (Jf (@) ,  h‘(@)) 
(exp[-PH(J‘(+)-J’(@ v +), h’(+) -hY@ v +))I)(J’(@ v +), h’(@ v $1) 
0 being the inverse temperature. Using the lemma we get 

J’(@ A + ) - J ‘ ( @ ) ~ J ’ ( + ) - J ’ ( @ V + ) ~ o  
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Remarks. In the proof of proposition 4 we used only propositions 1 to 3. We can 
consider more general Hamiltonians than (2.1). In particular we can introduce three- 
body interactions and so on. The only property which is required is that -Hog E FD, and 
-H& E FDn. We may also take other single-spin distributions than ds for the D- 
dimensional spin S. The only property which we need is that the distribution ds satisfies 
ds = du do dp(8) with some probability measure dp(8), du and du being defined as 
above. 

3. Examples 

In this section we consider examples where we can apply our method. The different 
results which we obtain are simply a translation of proposition 4 in particular situations. 
Therefore we do not give further details. At the end of the section we derive one more 
result valid for all D which implies the announced results (i) and (iii) of 0 1. We begin 
with D = 2. 

3.1. D = 2  

In this case HD(J, h )  becomes 

-H2(J', J 2 ,  h', h 2 )  
= ( ~ f i  cos e, cos e, +J% sin e, sin e,) +C (hf cos e, + h: sin e,). (3.1) 

i Z j  I 

The decomposition of a spin S = ( S ' ,  S 2 )  = (cos er/, sin f3V) has been treated as an 
example in the last section. In this way for HD,(Jrl ,  h") and HDQr2, hfr2) we get 

- H ~ , = ~ ( J " ,  h r l )  = J ~ C O S  si COS ejuq + E h :  COS e,u, 
i #J i 

and 

-HD..=I(J"2, h'f2) = Jt sin 0, sin e,V,V, +I hf  sin eiVi 
i # j  i 

where 8, E [0, ~ / 4 ]  and Q and V,  are now one-dimensional spins. Applying proposi- 
tion 4 we obtain proposition 5. 

Proposition 5. Let us consider a model defined by (3.1) with J' 3 0, J 2  2 0, h' 2 0 and 
h 2 3 0 .  Then we have 

( S X 3 )  2 (sf,>(sb>, i = l , 2  

<s!4s3 6 (sa)(s;> 
(sisi) 2 0. 

<S1),(J1, J2 ,  h' ,  h2)S(UA)1(J1 ,  h l ) = ( S f i ) l ( J 1 ,  h ' )  

(Si . S j ) a ( S z ) * ( S j )  

where Sfi = niaA Sf,  A c A? and the dot - means the scalar product. 

Remarks. (i) The first four inequalities follow respectively from (2.4), (2.5), (2.3) and 
(2.6) of proposition 4. The last inequality is an immediate consequence of the first one. 
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(ii) These ine ualities have a simple physical meaning. Let us consider a model defined 
by -H2(J', J , h, 0) ,  J' L 0, Jz  3 0, h 3 0 and for example the magnetization 9 

(3.2) 

where IAl is the number of elements of the set A on which the model is defined. It is easy 
to see that the inequalities of pro osition 5 imply that the magnetization is a positive 
function which increases if h or J increase but which decreases if J 2  increases. These 
properties are of course also valid whenever the thermodynamic limit of (3.2) exists. 
(iii) We have noted already that we can take more general interactions. For example 

P 

with JakO, i = 1 , 2  and any hi. The Ai describe an inhomogeneous crystal field. 
(iv) Recently Monroe (1975) proved part of proposition 5 for two-body interactions 
using a different technique. Bricmont (1975) also proved proposition 5 by yet another 
method. (v) We can derive other inequalities by using the rotational symmetry of the 
interactions if J' = 5'. In this case we can write (3.1) as follows 

-H,(J ,L)= - H 2 ( J , J , h 1 , h 2 ) =  1 AjSi . S j + C h i  .si. (3.3) 
i # j  i 

If we perform a rotation R about ~/4, a spin S = (S', S z )  becomes T = RS = (T ' ,  T z )  = 
# ( ( S ' - S 2 ) ,  ( S ' + S 2 ) ) .  Using RSi . RSi = S , .  Si and the invariance of ds under 
rotation, we obtain for example the relation 

( (S'  + S 2 ) A ) z ( J ,  J, h ', h ') = ( & ) I A ' (  Ti)2(J, J, ~ ( h  ' - h '), $G(h ' + h')). 

By this method we immediately get proposition 6 from proposition 5 .  

Proposition 6. Let us consider a model defined by (3.3) with Jij = Jh,= J $ k  0,  h 1  3 (h21. 
Then we have 

((s' + s 2 ) A  (s' + s 2 ) B ) 2  

((s' - s 2 ) A  (s' - s 2 ) B ) 2  

((s' -S2)A(S1 + s 2 ) B ) 2  s ((s' -s2)A)2((s1 + s 2 ) B ) 2 .  

((s' + s 2 ) A  )2((s1 + s z ) B ) Z  

((s' -s2)A)Z((s1 - s 2 ) B ) 2  

Corollary 7. Under the conditions of proposition 6 we have 

<s!si'>2 - (S!>2(Sf>2 s <sfsi'>z - (SZ>,<Si'>Z 

( ( S ! S f > 2  - (s!)Z(s;M + ((SZ$>Z - (S3&) 
3 (<S!Si'>, - (s!>z(sf>z) + ((SfS?)z - (Sf)Z(S?)Z). 

Remarks. Let us consider the model defined by (3.3) with J a  0, h l  = h S O  and h2 = 0. 
The parallel susceptibility X I '  is the derivative of the magnetization with respect to the 
magnetic field h (see (3.2)), i.e. 
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Here T stands for the temperature and k is the Boltzmann's constant. One also usually 
defines a transverse susceptibility by 

We thus obtain from the first inequality of the corollary that the parallel susceptibility is 
dominated by the transverse susceptibility. Both are positive by the first inequality of 
proposition 5 .  These properties are also true at the thermodynamical limit. 

3.2. D = 3 

In this case D' = 1 and D" = 2, and 

ds = du dv sin 0 do. 

It is important to realize in this case that the decomposition of S = (S ' ,  . . . , S 3 )  = 
(cos eU, sin O V )  is not the only possible one. We can, for example, collect the first and 
the third components of S in order to form another two-dimensional spin and so forth. 
There is also no unique choice of the conditions on J and h. We consider only two 
cases. For example we have propositions 8 and 9. 

Proposition 8. Let us consider a model defined by (2.1) with D = 3 ,  J i a J ; > J i 2 0 ,  
h,? 3 0  and h? = h: = 0. Then the following is true: 

<s;s;>3 2 (s;>3(s;>3 

<sx>3 (s23(s;>3 k = 2 , 3  

k = 1 , 2 , 3  

( S 3 3 $ ) 3  3 0 

(Sl ' Sj )33(SJ)3  (SI), .  

( S a ) 3 ( J ' ,  J 2 ,  J 3 ,  h 1 ) ~ ( S ~ ) 2 ( J ' ,  J 2 ,  h ' )  

On the other hand, if we have isotropic two-body interactions we can also derive new 
inequalities by using the method of proving proposition 6. 

Proposition 9. Let us consider a model defined by (2.1) with D = 3, Jh= J$=  J$> 0, 
h! 2 0 and h: = h f  = 0. Then the following is true: 

((s ' + S k ) A  (s' + S k ) B ) 3  k = 2 , 3  

((s' - S k  ) A  (s' - S k  ) B ) 3  k = 2 , 3  

((s' - S k ) A  (s' + S k ) B > 3  ((s' -sk>A>3((s' + S k ) B > 3  k = 2 , 3  

((s' + S k  ) A  )3((s1 + S k ) B ) 3  

( ( S *  - S k  ) A  )3((s1 - S k  ) B  ) 3  

and in particular 

(S!Sf>3 - (S, ' )3(S33 6 (s;ks;>3 k = 2 , 3  
Remark. The interpretation of these two propositions is like that of propositions 5 and 
6 and corollary 7. 

3.3. D = 4 

Here D' = D" = 2 and 

ds = du dv 2 sin 8 COS e de. 
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We can make the same remarks as above. We obtain for example the analogue of 
proposition 5 with J' = J 2  3 J 3  =J4 L 0 and h 1  30 ,  h 2  = h3 = h4 = 0. 

3.4. 

If the dimension of the spin is bigger than 4, we cannot apply our method. However we 
can prove the following result for D > 3. 

Proposition 10. Let us consider the model defined by (2.1) with J' 2 J 2  3 0, h' 3 0, 
h = . . . = hD = 0 for any D 3 3. Then we have 2 

(si),(J', h ' ) ~ ( S ~ ) 2 ( J ' , J 2 ,  h ' ) L ( s : ) D ( J ' , .  . . , J D ,  h ' )  (3.4) 

Proof. The first inequality is a result of proposition 5. Let D 3 3. We decompose the 
spin S with D' = 2 and D" = D - 2. The proof then reduces to that of (2.6) of proposition 
4. 

Remarks. (i) Let us consider isotropic ferromagnetic models characterized by D, J >  0 
and h 2 0 .  By convention we choose the magnetic field (h, 0,. . . , 0). We take the 
thermodynamical limit and denote the magnetization by m(D, J ,  h) .  Using proposition 
10 we get 

m ( l , J ,  h ) s m ( 2 , J ,  h ) z m ( D , J ,  h)aO,  0 2 3 .  

The spontaneous magnetization is by definition 

lim m(D, J, h )  = m+(D, J ) .  
h+O+ 

Thus we have 

m +( I, J) 3 m +(2, J) L m+(D, J) L 0, 0 2 3 .  (3.5) 

The two results (i) and (iii) of § 1 then follow directly from (3.5). 

becomes larger with D. For isotropic systems we expect 
(ii) The inequalities (3.4) are to be expected because the phase space of the spin S 

(si * s j > D  (si Sj )D+l*  

4. Lower bounds for models with D = 2 

In this last section we compare the magnetizations of an anisotropic X - Y  model and of 
an king model. The result gives a simple proof of the existence of a first-order phase 
transition of an anisotropic ferromagnetic X- Y model in two or more dimensions. The 
proof is based on our method of § 2 and a judicious choice of the reference frame 
inspired by our remarks of § 3 on the possibility of performing a rotation of the spins. 
We start with the model defined by (3.1) and we choose J1 3 IJ21 L 0, h' 2 0, h2  = 0. It is 
convenient to write J' = J, J2  = yJ and (3.1) as follows: 

-H2(J, y, h )  = J&(1 +y i j ) ] ( s ; s f  +$Si") 
i # j  
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Propsition 11. Let us consider the model defined by (4.1) and Jd 0, h 2 0 and IyI < 1.  
Then for all A c A 

( S i ) z ( J ,  y, h )  3 (t)'A'(SfZ)l[m - IYIL %I 
where IA) is the number of elements of the set A. 

Remarks. (i) From the proposition we obtain for the magnetization the relation 

m(2,J, 'y, h ) ~ 3 m C l , ~ J J ( l - l r l ) , ~ h I .  

~ ' ( 2 ,  J, 'y) sh+[l, i~, (1 -Id)]. 
Therefore the spontaneous magnetization satisfies 

But the spontaneous magnetization of an king model is non-zero at low enough 
temperature if d 2 2. We have thus proved result (ii) of the introduction. 

(ii) Proposition 11 was first proved by Kunz (1974) using a different method in order 
to prove result (ii). 

Proof. In this proposition we consider the projection of the spin along the direction 
given by the magnetic field. We do not apply our method directly. First we mix the two 
components of the spin by choosing a new reference frame in such a wa that the 
magnetic field is now (Mh, $h); the new components of the spin are (T , T2) and 7 
-H2(J, 3/, h )  = C Jij[$( 1 + y$j)]( Ti' Ti' + Z? 7';) 

i # j  

+ C J,[$( 1 - yJ]( T; T; + T? Ti') +I $&hi (Tf -I- T?). 
i # j  i 

In the first step we used the fact that ds is invariant under rotation. In the next step we 
apply our method. But now the Hamiltonian H2(J, y, h)  does not split into two 
Hamiltonians of the Ising type which are coupled only by the variables 8 as before. 
Owing to our choice of the reference frame we also get ferromagnetic couplings 
between the two king systems occurring in the decomposition or, in other words, only 
one Ising system with spins Ui and V,  and with Hamiltonian 

-C J,~[$(I+~,~)](cos e, cos e j u g  +sin e, sin e jqv , )  
r # j  

where dp(Oi) = (2/7r) dei, ( * is the average value computed with the Hamiltonian 
(4.2) and Z1 is the corresponding partition function. We now note that 1 f yii L 1 - JyijJ 
so that applying proposition 1 gives: 

(n i EA ( cose iu+s ine iv ) )  1 a(n i eA (coseiU.+sineiV,))+~C(B,, 1 . . . ,  e ~ )  
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where ( - ): is the average value computed with the Hamiltonian given by (4.2) when we 
replace 1 i y i j  by 1 - /y i j l .  Now we note that the function C(B1,. . . ,e,) is invariant, if 
we change Oi in 7r/2 - 0,. This implies that 

min C(&, . . . , e,)= min C(B1,. . . , O N ) .  
@ l r . . - r e N  e,. . .,eN 

Qs8, s n/2 O S  6, S ~ / 4  

But on the interval [0, r/4], cos 8 3 bh and sin 8 z 0. By applying proposition 1 again, 
we get: 

c(el, . . . , e,) 3 (+h)iAl(si>l[$~(i +I), %I 
where now the average value is computed with 

-HI[$( 1 - lyl), $I J = 2 J;,[i( 1 - ly,,l)]S:S; +C &S!. 
I +'I i 
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